Rule-Based Distributed Data Management

Reagan W. Moore Richard Marciano

{moore,marciano}@diceresearch.org
 http://irods.diceresearch.org
 http://srb.diceresearch.org

Preservation Concepts

Infrastructure independence

- Manage technology evolution
- Manage authenticity, integrity, chain of custody
- Scalability

Management virtualization

- Characterize preservation policies
- Characterize preservation procedures
- Federation, interoperate with other archives

Data Management Applications (What do they have in common?)

- Data grids
 - Share data organize distributed data as a collection
- Digital libraries
 - Publish data support browsing and discovery
- Persistent archives
 - Preserve data manage technology evolution
- Real-time sensor systems
 - Federate sensor data integrate across sensor streams
- Workflow systems
 - Analyze data integrate client- & server-side workflows

Assertion

- Data management applications apply many of the same procedures
 - Data format parsing
 - Metadata manipulation
 - Data administration tasks
- Each application applies different management policies
 - Migrate records between data life cycle stages by changing the management policies
 - Can create generic infrastructure that can be used to implement collections, digital libraries, persistent archives

DICE Group Objectives

- Build technology to organize distributed data into a shared collection
- Manage properties of the shared collection independently of the local administrative domains
- Automate application of management policies
- Automate validation of assessment criteria

Digital Preservation

Preservation is communication with the future

- How do we migrate records onto new technology (information syntax, encoding format, storage infrastructure, access protocols)?
- SRB Storage Resource Broker data grid provides the interoperability mechanisms needed to manage multiple versions of technology
- Preservation manages communication from the past
 - What information do we need from the past to make assertions about preservation assessment criteria (authenticity, integrity, chain of custody)?
 - iRODS integrated Rule-Oriented Data System

Virtualization of Data Collections

Data Grid

Data delivered

GRA

5K for data

User asks for data from the data grid
The data is found and returned
Where & how details are hidden

UNC

Data Virtualization

Data Access Methods (C library, Unix, Web Browser) **Data Collection Storage Repository** Data Grid • Logical resource name space Storage location • Logical user name space User name File name • Logical file name space

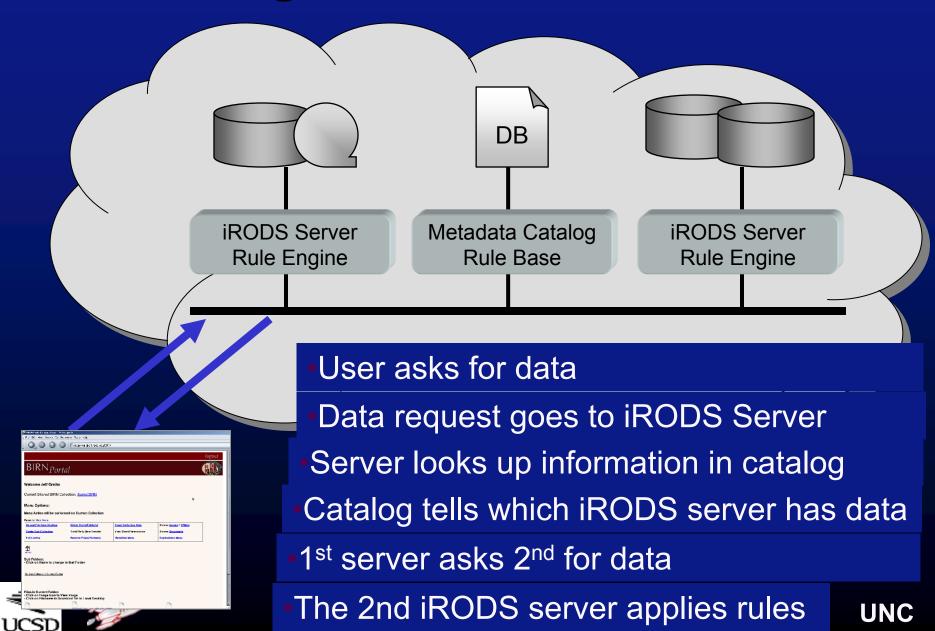
- Logical context (metadata)
- Access constraints

Data is organized as a shared collection

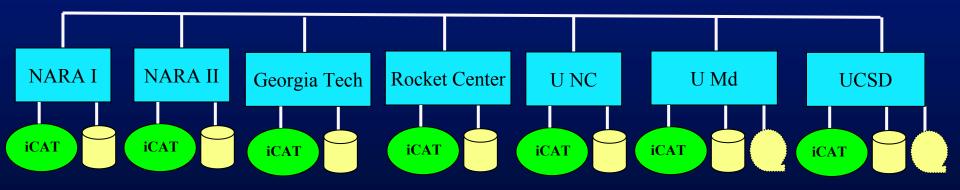
•

•

•


Access controls

• File context (creation date,...)


Using a Data Grid - Details

Date	5/17	7/02	6/30/04		11/29/07			
Project	GBs of data stored	1000Õs o files	GBs of data stored	1000Õs o files	# Curators	GBs of data stored	1000Õs o files	# Curators
Data Grid								
NSF / NVO	17,800	5,139	51,380	8,690	80	88,216	14,550	100
NSF / NPACI	1,972	1,083	17,578	4,694	380	39,697	7,590	380
Hayden	6,800	41	7,201	113	178			227
Pzone	438	31	812	47	49	28,799	17,640	68
NSF / LDAS-SALK	239	1	4,562	16		207,018		
NSF / SLAC-JCSG	514	77	4,317	563		23,854		
NSF / TeraGrid			80,354	685	2,962	282,536	7,257	3,267
NIH / BIRN			5,416	3,366	148	20,400	40,747	445
NCAR						70,334	325	
LCA						3,787	77	2
Digital Library								
NSF / LTER	158	3	233	6	35	260	42	36
NSF / Portal	33	5	1,745	48	384	2,620	53	460
NIH / AfCS	27	4	462	49	21	733	94	21
NSF / SIO Explorer	19	1	1,734	601	27	2,750	1,202	
NSF / SCEC			15,246	1,737	52	168,931	3,545	73
LLNL						18,934	2,338	5
CHRON						12,863	6,443	73 5 5
Persistent Archive								
NARA	7	2	63	81	58	5,023	6,430	58
NSF / NSDL			2,785	20,054	119	7,499	84,984	136
UCSD Libraries			127	202	29		1,328	
NHPRC / PAT						2,576	966	28
RoadNet						3,557		30
UCTV						7,140	2	
LOC						6,644	192	
Earth Sci						6,136		
TOTAL	28 TB	6 mil	194 TB	40 mil	4,635	1,023 TB	200 mi	5,539

National Archives and Records Administration Transcontinental Persistent Archive Prototype

Federation of Seven Independent Data Grids

Extensible Environment, can federate with additional research and education sites. Each data grid uses different vendor products.

Data Management Systems

iRODS - integrated Rule-Oriented Data System

Data Management	Conserved	Control	Remote				
Environment	Properties	Mechanisms	Operations				
Management	Assessment	Management	Capabilities				
Functions	Criteria	Policies					
	Data grid Š Management virtualization						
Data Management	Persistent	Rules	Micro-services				
Infrastructure	State						
	Data grid Š Data and trust virtualization						
Physical	Database	Rule Engine	Storage				
Infrastructure			System				

UNC

• Event

• Atomic, deferred, periodic

Condition

- Test on state information attributes
 - Storage system, collection, user group, file type

Action set

- Chained micro-services and rules
- Server-side workflow
- Recovery set
 - Maintain transaction semantics in distributed system

Preservation Rules

• Authenticity

- Rules that quantify required descriptive metadata
- Rules that verify descriptive metadata is linked to records
- Rules that govern creation of AIPs

• Integrity

- Rules that verify records have not been corrupted
- Rules that manage replicas
- Rules that recover from corruption instances
- Rules that manage data distribution

• Chain of custody

- Persistent identifiers for archivists, records, storage
- Rules to verify application of access controls
- Rules to track storage location of records

RLG/NARA Assessment

- Developed 105 rules that implement the TRAC assessment criteria
 - 90 Verify descriptive metadata and source against SIP template and set SIP compliance flag
 - 91 Verify descriptive metadata against semantic term list
 - 92 Verify status of metadata catalog backup (create a snapshot of metadata catalog)
 - 93 Verify consistency of preservation metadata after hardware change or error

Theory of Data Management

- Characterization
 - Persistent name spaces
 - Operations that are performed upon the persistent name spaces
 - Changes to the persistent state information associated with each persistent name space that occur for each operation
 - Transformations that are made to the records on each operation
- Completeness
 - Set of operations is complete, enabling the decomposition of every management process onto the operation set.
 - Management policies are complete, enabling the validation of all assessment criteria.
 - Persistent state information is complete, enabling the validation of authenticity and integrity.
- Assertion
 - If the operations are reversible, then a future management environment can recreate a record in its original form, maintain authenticity and integrity, support access, and display the record.
 - Such a system would allow records to be migrated between independent implementations of management environments, while maintaining authenticity and integrity.

For More Information

Reagan W. Moore University of North Carolina, Chapel Hill <u>rwmoore@renci.org</u>

http://irods.diceresearch.org

Representation Information

- Defined in OAIS Open Archival Information System
 - Constitutes the information required to parse, understand, and manipulate a record

Structural information

Data format

Semantic information

- Descriptive metadata
- Provenance metadata

Knowledge

- OAIS punted and provided a link to a knowledge community
- CASPAR project in Europe is reanalyzing

What is Information? (Scientific Data)

Data

- Comprised of bits
- Information
 - Labels applied to data
- Knowledge
 - Relationships between labels
- Challenge
 - The application of a label requires the assertion that specified relationships hold

Scientific data

Relationships

- Semantic logical
 - Ontologies that define "is a" and "has a"
- Structural spatial
 - Graphical information systems
- Procedural temporal
 - Workflows
- Algebraic functional
 - Mathematical or physical
- Systemic epistemological
 - Properties of the collection

Scientific Data Representation for a Sequence of Bits

Impose structure on the bits

- Bytes : words : arrays
- Label the structures
 - Time : pressure : density : temperature
- Map the structures to a coordinate system
 - 1 Dimension : 2D : 3D : 4D : 11D
- Map the coordinate systems to a geometry
 - Rectilinear : cylindrical : spherical : toroidal
- Map derived variables to functions
 - Algorithms for pressure = density * temperature
- Map variables to epistemology
 - Mathematical theory behind the simulation
 - Units MKS : CGS : EMU

Building a Digital Library for Scientific Data

Scale

- Size of collections
- Size of records

Distributed over wide area networks

- Data sources
- Researchers

Diversity of data types

- Semantics
- Formats
- Embedded relationships
- Management policies
 - Differ for each phase of the data life cycle

Motivation

- Observe that communities need to share data across institutions, administrative domains
- There typically is a driving purpose behind the data sharing
- There typically are specific management policies associated with the shared collection

Evolution of Data Grid Technology

Shared collections

- Enable researchers at multiple institutions to collaborate on research by sharing data
- Focus was on performance, scalability

Digital libraries

- Support provenance information and discovery
- Integrated with digital library front end services
- Preservation environments
 - Support preservation policies
 - Build rule-based data management system
- Differ in choice of management policies

Communities Driving Requirements

- DARPA Massive Data Analysis System (1996)
- DARPA/USPTO Distributed Object Computation Testbed
- NSF National Virtual Observatory survey replication
- DOE Accelerated Strategic Computing Initiative data aggregation
- NASA Information Power Grid data grid
- NIH Biomedical Informatics Research Network federation
- Interuniversity Consortium for Political and Social Research bulk I/O
- DOE BaBar high energy physics data grid
- National Optical Astronomy Observatories data grid
- National Science Digital Library archive
- UK e-Science data grid parallel I/O
- NARA Transcontinental Persistent Archive Prototype archive
- NHPRC Persistent Archive Testbed
- NSF Temporal Dynamics of Learning data grid (2008)

SDSC Data Grids

- Storage Resource Broker (SRB)
 - Initially funded by DARPA in 1996
 - Current version is 3.5.0, released Dec 3, 2007
 - Production system used internationally
- Integrated Rule-Oriented Data System (iRODS)
 - Funded by NSF SDCI and NARA
 - Current version is 1.1, released June 2008

Software Development

iRODS release controlled by DICE group

- Daily build and test procedures
- CVS maintained by DICE group
- Multiple releases per year
- Wiki for distributing information
- irods-chat e-mail discussion list
- Bugzilla error report tracking
- Feature list of proposed developments

Design Implications

- Heterogeneous storage systems
 - Data stored in file systems, archives, databases
- Global name spaces
 - Files
 - Users
 - Resources
- Persistent access controls
 - Constraints between name spaces
- Consistent state information
 - Properties of files, collections, resources, users

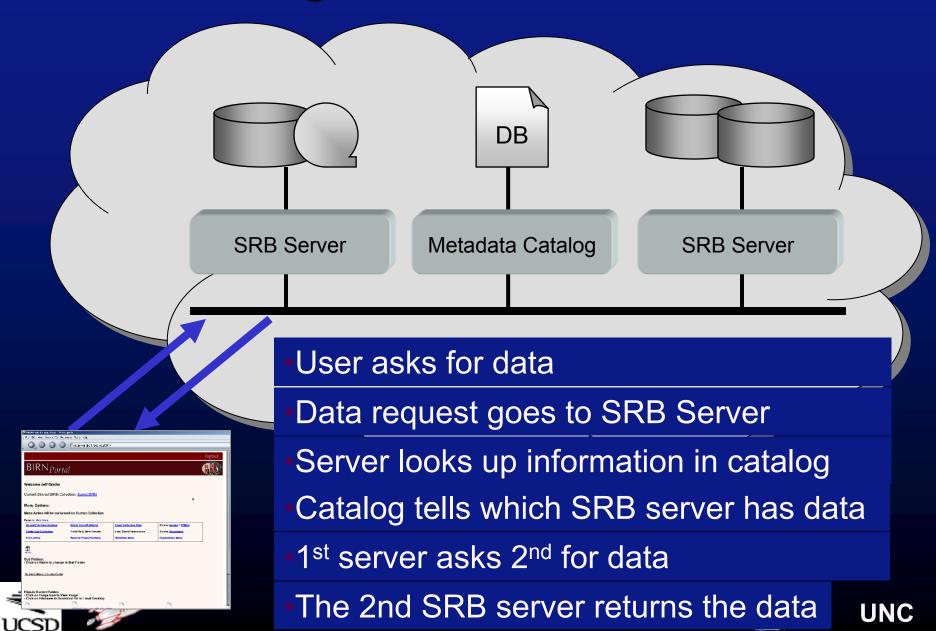
Data Grids

Data virtualization

- Provide the persistent, global identifiers needed to manage distributed data
- Provide standard operations for interacting with heterogeneous storage system
- Provide standard actions for interacting with clients
- Trust virtualization
 - Manage authentication and authorization
 - Enable access controls on data, metadata, storage

Federation

- Controlled sharing of name spaces, files, and metadata between independent data grids
- Data grid chaining / Central archives / Master-slave data grids / Peer-to-Peer data grids



Using a Data Grid - SRB

Extremely Successful

- Storage Resource Broker (SRB) manages more than 2 PBs of data in internationally shared collections
- Data collections for NSF, NARA, NASA, DOE, DOD, NIH, LC, NHPRC, IMLS: APAC, UK e-Science, IN2P3, WUNgrid
 - Astronomy
 - Bio-informatics
 - Earth Sciences
 - Ecology
 - Education
 - Engineering
 - Environmental science
 - High energy physics
 - Humanities
 - Medical community
 - Oceanography
 - Seismology

Data grid **Digital library** Data grid Collection Persistent archive **Digital library** Data grid Data grid Data Grid **Digital library** Real time sensor data, persistent archive Digital library, real-time sensor data

Goal has been generic infrastructure for distributed data

UNC

Approach

- To meet the diverse requirements, the architecture must:
 - Be highly modular
 - Be highly extensible
 - Provide infrastructure independence
 - Enforce management policies
 - Provide scalability mechanisms
 - Manipulate structured information
 - Enable community standards

Generic Infrastructure

- Data grids manage data distributed across multiple types of storage systems
 - File systems, tape archives, object ring buffers
- Data grids manage collection attributes
 - Provenance, descriptive, system metadata
- Data grids manage technology evolution
 - At the point in time when new technology is available, both the old and new systems can be integrated

Observations of Production Data Grids

- Each community implements different management polices
 - Community specific preservation objectives
 - Community specific assertions about properties of the shared collection
 - Community specific management policies
- Need a mechanism to support the socialization of shared collections
 - Map from assertions made by collection creators to expectations of the users

Data Management

Observe that efficient systems require

- Aggregation of data
 - Bulk operations
 - Bulk storage
 - Bulk I/O
- Aggregation of operations on data
 - Management policies
 - Remote Procedures
 - Structured information
 - Posix I/O

 iRODS maps from policies to procedures to operations on structured information to I/O operations on storage systems

Data Virtualization

Access Interface

Standard Micro-services

Data Grid

Standard Operations

Storage Protocol

Storage System

Map from the actions

requested by the access method to a standard set of microservices. The standard microservices are mapped to the operations supported by the storage system

UNC

iRODS Clients

- C library calls
- Unix shell commands
 - iRODS/clients/icommands/bin
- Jargon Java I/O class library
 - iRODS/java/jargon
- FUSE user level file system
 - iRODS/clients/fuse/bin/irodsFs fmount
- Parrot
 - http://www.cse.nd.edu/~ccl/software/parrot
- Python-based web browser
 - http://irods.sdsc.edu
- iRODS rich web client
 - https://rt.sdsc.edu:8443/irods/index.php
- DSpace and Fedora in test

iCommands

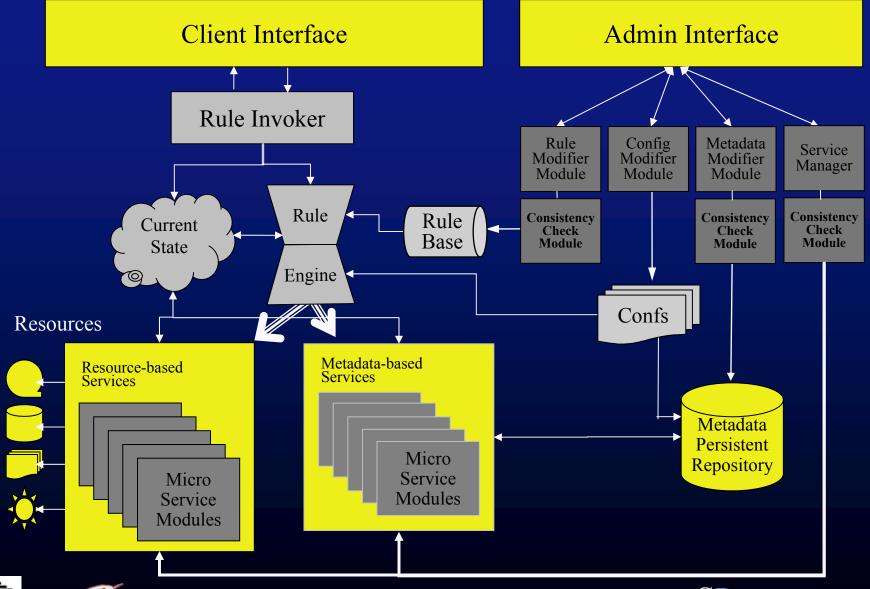
~/irods/clients/icommands/bin

- icd
- ichmod
- icp
- ils
- imkdir
- imv
- ipwd
- irm
- ienv
- ierror

- iput
- ireg
- irepl
- itrim
- irsync
- ilsresc
- iphymv
- irmtrash
- ichksum
- iinit
- iexit

- iqdel
- iqmod
- iqstat
- iexecmd
- irule
- iuserinfo
- isysmeta
- imeta
- iquest
- imiscsvrinfo
- iadmin

Standard Operations


- The capabilities needed to interact with storage systems
 - Posix I/O
 - File manipulation
 - Metadata manipulation
 - Bulk operations
 - Parallel I/O
 - Remote procedures
 - Registration

integrated Rule-Oriented Data System

iRODS Components

- Clients
- Persistent state information catalog iCAT
- Server middleware at each storage system
- Rule engine at each storage system

- Implements server-side workflows
 composed from micro-services
- Rules control execution of micro-services

irods Extensibility

Rules

- Use default rules for data grid capabilities
- Administrator modification of pre-packaged rules (turn capabilities on and off)
- Creation of new rules using existing microservices
- Write new micro-services and the rules controlling their execution

iROD Exensibility

State information

- Audit trails on system state information
 - Parse audit trails for compliance with policy
- Add user-defined metadata
 - Descriptive context
- Create schema versions
 - Map persistent state name to a different column in the database
- Add new system metadata

NARA Transcontinental Persistent Archive Prototype

Distributed Data Management Concepts

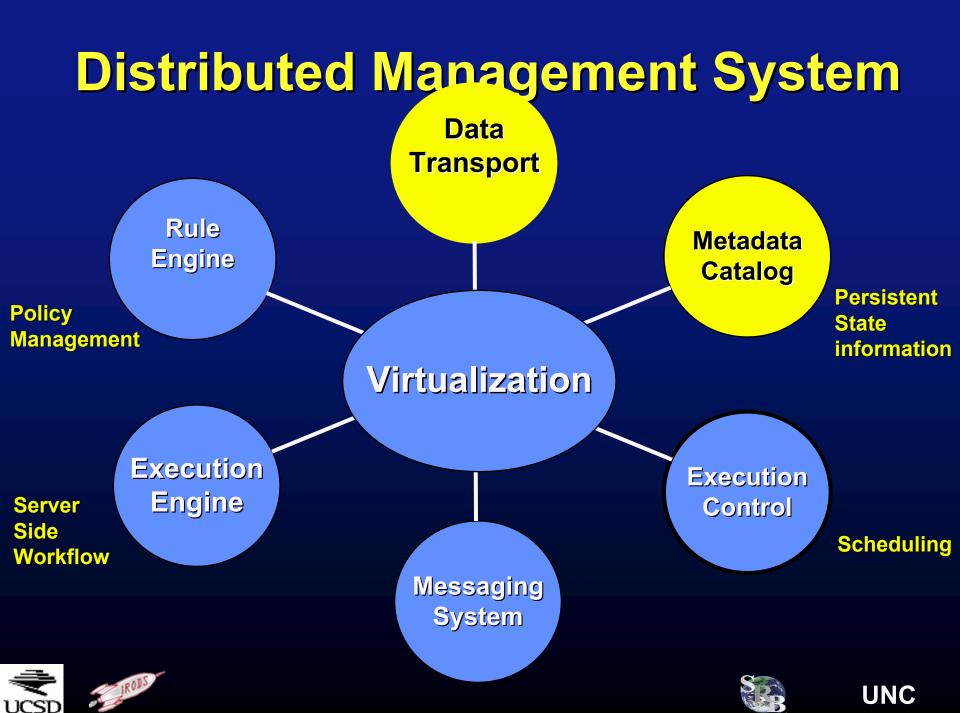
- Data virtualization
 - Storage system independence
- Trust virtualization
 - Administration independence
- Management virtualization
 - Policy independence
- Risk mitigation
 - Federation of multiple independent data grids
 - Operation independence

Data Management Challenges Authenticity

- Manage descriptive metadata for each file •
- Manage access controls ullet
- Manage consistent updates to administrative metadata ullet

Integrity

- Manage checksums
- Replicate files
- Synchronize replicas
- Federate data grids


Infrastructure independence

- Manage collection properties ullet
- Manage interactions with storage systems ullet
- Manage distributed data

iRODS Development

- NSF SDCI grant "Adaptive Middleware for Community Shared Collections"
 - iRODS development, SRB maintenance
- NARA Transcontinental Persistent Archive Prototype
 - Trusted repository assessment criteria
- NSF Ocean Research Interactive Observatory Network (ORION)
 - Real-time sensor data stream management
- NSF Temporal Dynamics of Learning Center data grid
 - Management of IRB approval

Planned Development

- GSI support (1)
- Time-limited sessions via a one-way hash authentication
- Python Client library
- GUI Browser (AJAX in development)
- Driver for HPSS (in development)
- Driver for SAM-QFS
- Porting to additional versions of Unix/Linux
- Porting to Windows
- Support for MySQL as the metadata catalog
- API support packages based on existing mounted collection driver
- iCAT to ICAT migration tools (2)
- Extensible Metadata including Databases Access Interface (6)
- Zones/Federation (4)
- Auditing mechanisms to record and track iRODS metadata changes

iRODS Development Collaborations

- Shibboleth
- GSI
- Data format parsing
- Parrot interface
- Fedora port
- DSpace port
- Container
- Perl/Python/PHP
- LStore integration

- UK ASPIS
- BMBF Germany
- EU SHAMAN
- U Notre Dame
- Cornell / NSDL
- MIT
- UK e-Science
- Australia
- Vanderbilt

iRODS Tutorials - 2008

- January 31, SDSC
- April 8 ISGC, Taipei
- May 13 China, National Academy of Science
- May 27-30 UK eScience, Edinburgh
- June 5 OGF23, Barcelona
- July 7-11 SAA, SDSC
- August 4-8 SAA, SDSC
- August 25 SAA, San Francisco

Approach - Data Grid

Organize the data into a shared collection

- Logical name space for organizing files
- Access controls for allowed use
- Manage the properties of the shared collection
 - Description
 - Policies
 - Procedures

Automate

- Administrative functions
- Validation of assessment criteria

